

National Cooperative Geologic Mapping Program 2006

SUMMARY OF STATEMAP GEOLOGIC MAPPING PROGRAM IN WEST VIRGINIA

Federal				
Fiscal		State	Federal	Total
Year	Project Quadrangle	Funding	Funding	Funding
1993	Canaan Valley	\$26,545	\$23,167	\$49,712
1994	Canaan Valley - Davis	40,987	23,000	63,987
1994	Big Pool/Glengary	40,836	30,000	70,836
1995	Canaan Valley - Mt. Storm	39,251	22,000	61,251
1996	Hagerstown/Frederick	12,435	10,210	22,645
1996	Great Cacapon/Paw Paw	70,394	50,000	120,394
1997	Blackbird Knob	33,529	24,675	58,204
1997	Largent/Levels	69,166	63,568	132,734
1997	Palo Alto	37,910	30,400	68,310
1997	Cumberland/Winchester	16,876	16,201	33,077
1998	Doe Hill/Sugar Grove	50,764	43,241	94,005
1998	Winchester/Front Royal	28,809	24,568	53,377
1999	Bluefield/Princeton	39,391	28,676	68,067
1999	Moatstown	32,618	26,996	59,614
1999	Capon Bridge/Rio	33,089	30,449	63,538
2000	Oakvale/Athens	25,603	25,603	51,206
2000	Sector/Moorefield	28,775	28,775	57,550
2000	Brandywine	15,622	15,622	31,244
2001	Petersburg East and e. Rig	35,697	32,732	68,429
2001	Snowy Mountain	36,749	35,619	72,368
2001	Lerona and Matoka	37,314	31,132	68,446
2002	w. Old Fields, w. Rig, Lake Lynn	36,309	34,692	71,001
2002	Circleville and Thornwood	33,006	27,559	60,565
2003	Morgantown North and South	39,000	25,646	64,646
2003	Franklin, e. Old Fields, w. Romney	34,918	26,818	61,736
2004	Ft Seybert, e. Romney, e. Spring.	42,095	32,569	74,664
2004	Osage and Rivesville	27,361	18,159	45,520
2005	Mozer, w. Springfield, s. Patt. Crk.	44,688	37,321	82,009
2005	Grant Town	13,893	13,398	27,291
2006	Milam, Cow Knob, Headsville	45,539	26,780	72,319
2006	Wheeling, Tiltonsville, Bethany	32,999	15,953	48,952
,	Totals	\$1,102,168	\$875,529	\$1,977,697

The STATEMAP component of the National Cooperative Geologic Mapping Program has increased the availability of accurate and up-to-date geologic maps for the state of West Virginia. The West Virginia Geological and Economic Survey has conducted geologic mapping in areas prioritized by the following criteria: infrastructure and economic development; high population growth; tourism and natural beauty; recreational use; environmental concerns; and significant water resources. Users of our maps include planning commissions, state and Federal agencies, schools, companies, and private individuals.

In West Virginia, geologic maps have been used in locating and evaluating waste disposal sites; identifying domestic water sources for homeowners in areas with no public water supplies; identifying problems associated with replacement wetlands in conjunction with Corridor H construction; educating public school teachers through field trips; conducting baseline geochemical surveys; teaching undergraduate geology majors through programs funded by the Association of American State Geologists and the USGS; and identifying historic landslides and their possible relation to past earthquakes.

Recent Outcome: A geologist with the West Virginia Department of Highways was preparing a mineral resources evaluation for some 11,000 acres in Hampshire and Hardy counties, West Virginia. The property is a wildlife management area operated by the West Virginia Department of Natural Resources. The Oriskany Sandstone reservoirs in these counties are anticlinal traps currently used for gas storage. In order to evaluate the property for future gas production or storage potential, it is critical to understand where the Oriskany crops out relative to the property as well as what the exposed bedrock is. It is also important to understand the bedrock geology to know if the Oriskany might be preserved at sufficient depth and with sufficient structural closure to create a reservoir. The geologist was referred to the geologic quadrangle maps produced by the WVGES Statemap program.